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ABSTRACT
Low latency and low implementation cost are two key requirements
in NoCs. SMART routers implement multi-hop bypass, obtaining
latency values close to an ideal point-to-point interconnect. How-
ever, it requires a significant amount of resources such as Virtual
Channels (VCs), which are not used as efficiently as possible, pre-
venting bypass in certain scenarios. This translates into increased
area and delay, compared to an ideal implementation.

In this paper, we introduce SMART++, an efficient multi-hop
bypass mechanism which combines four key ideas: SMART bypass,
multi-packet buffers, Non-Empty Buffer Bypass and Per-packet al-
location. SMART++ relies on a more aggressive VC reallocation
policy and supports bypass of buffers even when they are not com-
pletely free.With these desirable characteristics, SMART++ requires
limited resources and exhibits high performance.

SMART++ is evaluated using functional simulation and HDL
synthesis tools. SMART++ without VCs and with a reduced amount
of buffer slots outperforms the original SMART using 8 VCs, while
reducing the amount of logic and dynamic power in an FPGA by
5.5× and 5.0× respectively. Additionally, it allows for up to 2.1×
frequency; this might translate into more than 31.9% base latency
reduction and 42.2% throughput increase.
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1 INTRODUCTION
Low latency in NOCs for a wide range of traffic loads is critical
for multiprocessor performance. Different approaches have been
considered for this goal, including very large crossbars (such as
[19, 21]), low-diameter topologies based on high-radix routers (such
as [1, 2]) or aggressive lookahead routing, speculative stages and
router bypass mechanisms (such as [11, 12, 14]). SMART [11], which
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belongs to the last group, is a very effective solution which imple-
ments multi-hop bypass, this is, it skips several intermediate transit
routers in a single hop to dramatically reduce latency. SMART
combines the simplicity and regularity of traditional 2D tiled de-
signs with near-optimal latency (close to an ideal point-to-point
interconnect) and very high throughput.

However, practical implementations of SMART result in overly
large, power-hungry and slow router designs, for several reasons.
First, the Virtual Channel (VC) reallocation scheme employed re-
quires the corresponding buffer to be empty to reassign any VC
buffer. This is often required in several contexts such as worm-
hole (WH) networks using fully-adaptive routing protocols [9, 16].
However, SMART neither employs WH nor is fully adaptive. Addi-
tionally, obtaining good performance using this reallocation scheme
requires a large number of VCs, each of themholding awhole packet.
This large number of VCs makes allocators more complex, which
increases the critical path latency, and drastically increases router
area and power consumption. Second, the buffers to bypass must be
empty; otherwise the packet would not be forwarded. With a lim-
ited amount of VCs, this increases Head-of-Line Blocking (HoLB),
reducing performance. Finally, even though traffic is sent following
Virtual Cut-Through (VCT) flow control, flit-by-flit arbitration colli-
sions may make a packet spread through multiple routers, blocking
the buffers in the intermediate routers.

This work introduces SMART++, an efficient multi-hop bypass
mechanism that avoids the main limitations of SMART and allows
formuch simpler implementations. SMART++ combines SMART by-
pass [11], multi-packet buffers,Non-Empty Buffer Bypass (NEBB, [20])
and per-packet allocation using grant-hold circuits. SMART++ sup-
ports efficient configurations with a small amount of deeper buffers,
rather than the large number of individual VCs required in SMART,
which results in much better area, power and critical path delay.

SMART++ is evaluated using both the functional simulator Book-
sim [18] and an HDL implementation based on OpenSMART [15].
SMART++ outperforms SMART requiring only simple changes,
provides high performance using a single buffer of limited size per
port, and is both area- and power-efficient.

Specifically, the main contributions of this paper are:

• SMART++, an efficient multi-hop bypass mechanism that
outperforms the original SMART with much lower require-
ments on VCs, area and power.

• A performance evaluation by simulation, which proves that:
SMART++without VCs has similar performance than SMART
with VCs for single-flit packets and the same buffer space;
better performance for multi-flit packets; and 2x buffer re-
duction for the same performance for bimodal traffic.

• Resource utilization and power evaluations using HDL syn-
thesis, showing the high cost of VCs, and the extensive and
feasible variety of buffer configurations of SMART++.

https://doi.org/10.1145/3313231.3352364
https://doi.org/10.1145/3313231.3352364
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Figure 1: SMART bypass setup and flit traversal overview with priority to local flits.

Section 2 presents the required background. Section 3 details the
SMART++ foundations, while Section 4 discusses implementation
details. Section 5 evaluates the proposal. Finally, Section 6 compares
to related work and Section 7 concludes the paper.

2 BACKGROUND
2.1 NoC Router bypass
Router bypass [12, 13] is a mechanism that reduces latency by skip-
ping some pipeline stages of the router. This type of NoC has addi-
tional communication signals denominated LookAheads. LookA-
heads contain the routing information of packets and are sent one
cycle before the transmission of packet flits. With the routing infor-
mation, the next router allocates the crossbar one cycle before the
arrival of flits. If the allocation succeeds, the flit takes a bypass path
to the crossbar, avoiding the allocation stages and buffer write, sav-
ing time and energy. Multiple LookAheads from different sources
and local flits, may compete for the same output port in a router, so
a new unit called LookAhead Conflict Check or LookAhead Arbiter
is defined to arbitrate them in case of conflict.

2.2 Non-Empty Buffer Bypass (NEBB)
Switch allocation in traditional LookAhead router bypass is done
flit by flit. Therefore, part of a packet might bypass a router while
the remaining is buffered. When multiple packets are allowed to be
written in the same buffer, flits of different packets might interleave
in the buffer, corrupting data. Requiring empty buffers to forward
packets avoids this issue in a conservative way.

NEBB [20] is an alternative bypass policy that removes the empty
buffer limitation, as its name implies, maximizing the utilization
of the bypass. Different variants of NEBB are defined for different
flow controls, allowing to bypass a buffer which is non-empty, but
not advancing a packet to an output port. In general, they allow
the bypass of a non-empty buffer for single-flit packets in any case,
or when both the bypass and destination buffers have room for the
whole packet and VCT is assumed.

Maximizing the bypass utilization reduces dynamic power con-
sumption and the amount of VCs required to obtain the maximum
throughput from the NoC.

2.3 SMART: multi-hop router bypass
SMART (Single-Cycle Multihop Asynchronous Repeated Traver-
sal) [11] is a NoC router bypass that allows flits to cross multiple
routers in a single cycle. In this design, LookAheads are called
SMART-hop Setup Request (SSR). When flits are ready to be trans-
mitted in the next cycle, SSRs are broadcast to the next routers
in the path. HPCMax defines the maximum number of hops per
cycle allowed, limited by the operation frequency of the NoC. Two
variants are defined: SMART_1D only broadcasts SSRs in a row or
column of the NoC mesh; SMART_2D employs additional lines to
broadcast SSRs in both mesh dimensions, allowing for dimension
change in a single multihop at the cost of much higher complexity.

SSRs request access to the bypass in each of the downstream
routers, in a Switch Allocator Global (SA-G) function. In SA-G,
SSRs from different sources and local buffered flits may conflict. If
a conflict occurs, flits may suffer a premature stop and be buffered
in an intermediate router of the desired multihop path. A single
priority policy is enforced in all the network to guarantee correct-
ness. In this work, local flits always have priority over bypass flits
as it attains the best performance [11]. Figure 1 shows an example
of bypass setup and flit transmission. In the first cycle, the green
packet (first router) and the red packet (last router) broadcast the
SSRs in their route direction. The SSR of the green packet setups
the bypass path of the second and third routers because there are
no conflicts with other flits or SSRs. However, it loses against the
local red flit in the last router. In the second cycle, the green packet
crosses the first router crossbar and the bypass paths of the second
and third routers to get to the last router.

Routers in SMART follow VCT requirements to send a packet:
the destination buffer needs to hold the complete packet, and all
the flits of the packet are sent consecutively. However, the flits of
the packet are not always received consecutively at the destination
of the multi-hop. Indeed, global arbitration is performed per-flit,
not per-packet, in all routers in the multi-hop. Thus, a new packet
to be transmitted in one of the intermediate routers may receive
higher priority and cause a premature stop of part of the flits of
another packet. For this reason, flits from a packet may be received
with gaps, and flits from different packets may be interleaved in the
physical links between routers, similar to a WH network.
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There are two alternatives for the bypass path in SMART NoCs:
buffer bypass and router bypass. With buffer bypass [11], flits only
bypass the input buffers in the input unit, but they pass through the
crossbar. Buffer bypass is required for SMART_2D and for ejection
router bypass. Router bypass, depicted in Figure 1 and used in this
paper, was introduced in OpenSMART [15]. In this case, flits take a
dedicated path from the input port to the output port of the router
following the same dimension. Router bypass is more suitable for
SMART_1D because avoids conflicts between SSRs and local flits
that share the same input port but request different output ports.

3 SMART++
This section introduces SMART++, which supports multi-hop by-
pass even when inter-router buffers are not completely empty, as
long as no packet interleaving occurs in any buffer. SMART++ tar-
gets simple designs with only one buffer, or just a few ones (one
per virtual network required by the coherence protocol), leading to
high frequency and reduced area and power consumption.

SMART++ combines three improvements over the baseline SMART:
i) Multi-packet buffers, ii) Non-Empty Buffer Bypass for single-flit
packets and iii) packet-by-packet arbitration to support multi-flit
NEBB bypass. These mechanisms are detailed in subsections 3.1-3.3.
Section 3.4 compares the different mechanisms, detailing in which
cases each of them supports packet bypass.

3.1 Multi-Packet Buffers (MPB)
SMART requires buffers sized for the largest packet in the net-
work, since it implements VCT flow control, but it only holds a
single packet due to its VC reallocation policy. SMART++ allows to
hold multiple consecutive packets in router buffers and can exploit
buffers larger than a single packet size. Such approach is similar to
previous proposals for NoCs [4, 7, 17, 22, 23]. The implementation is
similar to Whole Packet Forwarding (WPF [17]). WPF implements
an aggressive VC reallocation mechanism, which allows to reallo-
cate a given VC if it has enough buffer slots to hold the whole packet
and the tail of the previous packet has been already sent. According
to [17], WPF can be viewed as applying packet-based flow control
in a wormhole network. Note that in SMART flit-by-flit arbitration
behaves similar to a WH network.

The use of multi-packet buffers allows to employ a lower amount
of VCs with deeper buffers, leading to simpler memory organiza-
tions that exchange width (#VCs) by length (deeper FIFOs). Such VC
reduction simplifies allocation and reduces overall chip area even
though the total storage remains the same. Additionally, combining
multiple packets in the same buffer increases its efficiency, par-
ticularly with different-size packets (bimodal traffic), which often
occurs in NoCs. This is evaluated in Section 5.2.

3.2 Non-Empty Buffer Bypass (NEBB)
SMART requires an empty buffer in all of the routers to be bypassed.
Such policy is forced by its conservative VC reallocation scheme (if
no free buffer exists, packet is not sent to the bypass router in the
first place), but is also overly conservative, and reduces performance,
particularly when the amount of VCs is low.

SMART++ employs NEBB [20] to bypass a buffer even when
it is not empty. Such bypass is allowed as long as no two packets

are interleaved in a given buffer. For single-flit packets, this never
occurs as long as the destination buffer has already received the tail
of the previous packet. For this reason, SMART++ relies on NEBB to
bypass single-flit packets even when the input buffer is not empty.
This only requires a policy change in bypass conditions.

For multi-flit packets, the flit-by-flit allocation mechanism in
SMART implies that the bypass operation might be interrupted at
any cycle, if a higher-priority SSR is received at an intermediate
router. When this happens, the remainder of the packet is stored
in the intermediate router buffer, and if it is not empty, packets
would be interleaved and corrupted. For this reason, NEBB does
not support multi-flit packet bypass with non-empty buffers when
flit-by-flit allocation is employed.

3.3 Packet-by-packet arbitration (PPA)
As discussed in Section 3.2, flit-by-flit allocation prevents using
NEBB with multi-flit packets. SMART++ solves this issue using
packet-by-packet arbitration, which is implemented using a grant-
hold circuit [6] coupled to the round-robin arbitration stages (SA-G
and SA-L, discussed in Section 4.1).

Grant-hold circuits hold the arbiter outcome for a certain amount
of time. When a multi-flit packet header wins arbitration, SMART++
logic locks the arbiter to the winning packet. However, winning SA-
G does not guarantee that a flit will be transferred in the following
cycle: the flit could suffer a premature stop in an upstream router
in the multi-hop. To cover this case, SMART++ releases the grant
in two cases: when the packet tail is received, or when no flit is
received. Grant holding is not required for single-flit packets.

Effectively, this makes SMART++ behave exactly as VCT, receiv-
ing all packets without holes from upstream channel interleaving.
Only packet headers generate SSRs. When a higher-priority SSR
(lower distance, using local priority) is received in an intermediate
router while a packet is being bypassed, it loses arbitration and is
stored in the router buffers. This behavior does not conflict with
the single priority enforced in the network requirement of SMART
because it does not introduce false positives (flit received when it is
not expected), only premature stops. Additionally, these premature
stops do not reduce performance: they always occur because other
packet is actually being transferred on the desired output1.

3.4 Comparative analysis of the mechanisms
Table 1 summarizes the different cases in which bypass is supported
in SMART and SMART++, detailing the specific contribution of each
of the mechanisms SMART++ comprises. SMART can only forward
data to and bypass empty buffers. MPB supports forwarding packets
to non-empty buffers, but not bypassing. NEBB adds support for
single-flit packet bypass of non-empty buffers, and the complete
SMART++ design including PPA supports bypass of non-empty
buffers for any packet size.

Figure 2 presents two examples of the conditions presented in
Table 1, for both single- andmulti-flit packets, sending a packet from
R0 to R4. The original SMART mechanisms only sends data when
empty VCs are available, so packets stop at R1, which is the only
transit router with empty buffers. MPB allows to employ non-empty
VCs, but not bypass them, so packets stop at R2, which is the first
1There are no cascading invalidations, as occurs with SSRs using Prio=bypass [11].
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Table 1: Allowed bypass depending on the buffer status. Bypass and Dest. buffer refers to the buffers in the bypass router and
in the next router. Whenmultiple routers are bypassed, intermediate buffers are both bypass and dest. buffers. Theymay need
to be completely empty, or may accommodate at least a whole packet.

Bypass mechanism Bypass buffer: empty Bypass & Dest. buffer: packet
Dest. buffer: empty Dest. buffer: packet 1-flit packet Multi-flit packet

SMART (Baseline) ✓ X X X
SMART+MPB ✓ ✓ X X
SMART+MPB+NEBB ✓ ✓ ✓ X
SMART++ (SMART+MPB+NEBB+PPA) ✓ ✓ ✓ ✓

R0 R1 R2 R3SMART

   MPB, 
MPB+NEBB

R0 R1 R2 R3SMART

MPB

R4

MPB+NEBB, 
SMART++

R4

SMART++

Figure 2: Stop router of each mechanism in SMART++ for
single-flit (up) andmulti-flit (bottom) packets.R4 is the desti-
nation of the blue packet in R0. Routers only have one buffer.

non-empty buffer in the path. MPB+NEBB allows to bypass non-
empty VCs, but only for single-flit packets, so the packet reaches
the destination only in the first (upper) case of single-flit packet.
Finally, SMART++ allows to bypass non-empty VCs for any size of
the packet, so in both cases the packet reaches the destination.

4 SMART++ IMPLEMENTATION DETAILS
This section details the organization of the input units, and the
buffer backpressure mechanisms.

4.1 Pipeline and input buffer architecture
SMART++ implements a three stage pipeline as depicted in Figure 3.
In thefirst stage, flits are written in the VC selected in VC Selection
(VS). In parallel, the router performs Route Computation (RC) for
the next multi-hop and Switch Allocation Local (SA-L). SA-L grants
access to SA-G to local flits. In the second stage, SA-L winners
broadcast their SSRs. In parallel, Switch Allocator Global (SA-G)
grants access to the crossbar. In the third stage, flits traverse the
crossbar (ST) and link (LT) of the routers until finding the first
bypass disabled.

SMART++ targets designs with few input buffers, ideally one.
Such organization may introduce idle cycles, or bubbles, imposed
by the architectural dependencies between the operations of con-
secutive packets reusing the same buffer, as described in [8]. Note
that the three stages may need to access flit information in the same
cycle, as presented in Figure 3a, generating architectural dependen-
cies and stalls. Specifically, this would occur if flits were dequeued
from the input buffer when they win SA-G. In a design without
VCs, this would interrupt the transmission of packets sharing the
same input buffer, because the second packet in the queue cannot
place the request in SA-L while the front packet is doing SA-G. This
pipeline bubble increases latency and reduces throughput.

SMART++ implements the input unit represented in Figure 3b to
address this issue. The input unit has three pipeline registers R1-R3.
Using R2, flits are dequeued when winning SA-L, transferring the
following flit to the front position of the buffer. In this organization,
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(b) Input unit organization
Figure 3: Router input unit organization and pipeline.

VS and BW in stage 1 read the flit from the first register (1A),
whereas RC and SA-L also in stage 1 read their data from 1B, i.e.
the front of the input buffer (if it is not empty) or register R1 (if the
buffer is empty). In the latter case, the flit advances directly to R2.
SA-G reads the flit from register R2, while ST reads the flit from R3.

SMART++ implements VCT as defined in Section 3.3, so buffer
credits may be handled per-packet. For single-flit packets, the credit
is sent back to the upstream router when the flit advances to R2.
However, flits may wait indefinitely in R2. For multi-flit packets,
we notice that when the header advances to R3, it is sure that the
packet flits will be transferred consecutively. For this reason, credit
handling for multi-flit packets may be optimized as follows: when
a packet header advances to R2, one credit is generated; when the
first body flit advances to R2, the remaining credits are generated.

4.2 Buffer backpressure and VC selection
This section discusses different backpressure mechanisms sup-
ported by SMART routers, mainly credits and free_VC signals, and
their extension to support SMART++ routers.

The buffer backpressure mechanism notifies the availability of
buffer slots in the downstream router to receive a packet or flit. Cred-
its and ON/OFF signals are frequently used mechanisms that notify
the availability of each VC individually. Both of them allow the up-
stream router to track VC availability and select the destination VC
for a given packet in the VC allocator (VA). When conservative VC
reallocation is used, the ON/OFF mechanism is reduced to a single
ON signal per VC, sent when its packet is completely forwarded. By
contrast, when multiple packets are allowed per buffer and multiple
packet sizes are supported using VCT, credits track the amount of
free slots per VC. The implementation in OpenSMART [15] relies
on credits, and SMART++ also supports this mechanism directly,
with the optimization described in Section 4.1. The use of ON/OFF
signals is only supported for single-size packets.

The original SMART implementation in [11] employs a different
approach based on free_VC signals, depicted in Figure 4a. Each cycle,
routers activate a free_VC 1-bit signal on those ports that have at
least one free VC to receive a packet. Upstream routers do not know
which VC is free, and instead send the packet blindly without VC
Allocation (VCA); downstream routers assign a VC upon reception,
in a VC selection (VS) operation.
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(b) Availability signals in SMART++ with packet sizes
of 1 and 5 flits.

Figure 4: Buffer signaling mechanisms.

The free VC mechanism requires minimal changes to support
SMART++ routers. Instead of a single-bit flag, SMART++ employs
one independent 1-bit signal per packet size allowed in the network,
as depicted in Figure 4. This supports a case with free space for a
single-flit packet but not enough space for a multi-flit packet. These
signals are denoted avail_i to indicate the availability of some VC
with enough free slots to hold packets of i flits (for example, avail_1
and avail_5 for 1 and 5 flits respectively). Obviously, when avail_j
is set, avail_k will be also set ∀k < j.

SMART++ works with either credits or availability signals. In
both cases, it needs to know in advance the size of the packet to be
received, for the SA-G stage to decide to send the packet, if there
is space for it, or store it in a buffer. The SSR signal is extended
to indicate the packet size, using ⌈loд2(N )⌉ additional lines for
N packet sizes. For N = 2, this implies that SMART++ SSRs will
employ only one additional line. In NOCs supporting a single packet
size, the SSR network in both models is the same.

5 EVALUATION
This section evaluates SMART++. Section 5.1 describes the simula-
tion infrastructure; Section 5.2 presents the cycle-accurate perfor-
mance results of SMART++; Section 5.3 shows synthesis estimations
of power, resource utilization and maximum frequency.

5.1 Simulation Infrastructure
Two development platforms compose the simulation infrastructure:
BookSim [18] and Bluespec SystemVerilog (BSV). BookSim is an
open-source functional simulator written in C++. We have imple-
mented cycle-accurate models of SMART and SMART++, including
the partial versions detailed in Table 1. The model implemented sup-
ports variable size packets. We have also implemented SMART++
in BSV based on OpenSMART [15]2. We had to make significant
modifications to the SMART model provided by OpenSMART, for
it to compile and work properly (e.g. move ST from the second
pipeline stage to the third). Like OpenSMART, this model is lim-
ited to single-flit packets and works with credits. Router bypass
(Section 2.3) is implemented in both platforms.

The BSV implementation is used to validate the latency and
throughput results of the BookSim model, through BSV functional
simulations. To estimate power, resource utilization and frequency,
the BSV compiler is used to generate Verilog code, and Quartus

2Based on OpenSMART’s most recent official commit 84aa93b on 27 Sep 2017.

Table 2: Simulation parameters.
Parameter BookSim Bluespec System Verilog
Topology 4x4 and 8x8 meshes 4x4 mesh

Bypass mechanism SMART, SMART++ and partial versions SMART and SMART++
Bypass type SMART_1D with router bypass
Router size 5 ports

VC number & backpressure 1, 2, 4 or 8 VCs using credits
Buffer size 1, 2, 4, 5, 8, 10, 15 or 20 1, 2, 4 or 8

Packet size (flits) 1, 5 or bimodal (80% of 1 + 20% of 5) 1
Routing DOR XY

VC selection policy Shortest queue First available VC
SSR policy One dimension (SMART-1D) + Priority to local flits
HPCMAX 4 or 8 4
Flit size 128 bits 32 bits

Prime 18.1 Lite Edition to synthesize and measure the desired met-
rics on an Arria II EP2AGX45DF29I5 FPGA.

Performance simulations on BookSim evaluate 8x8 meshes with
HPCMax = 8. Validation simulations are evaluated in 4x4 meshes
with HPCMax = 4 due to the large requirements of BSV compiler.
In both cases local flits have priority over bypass. All the simulations
use synthetic traffic. Three traffic patterns are evaluated: random
uniform, bit-reversal and transpose. Moreover, we evaluate three
packet sizes: single-flit packets, 5-flit packets, and bimodal traffic
that combines single-flit and 5-flit packets following a distribution
of 80% and 20%, respectively. It emulates the packet distribution ob-
served in full-system simulations of the PARSEC benchmarks [17].
Table 2 gathers the most relevant simulation parameters.

5.2 Cycle-level Performance Results
This section evaluates SMART++ without VCs, then with VCs, and
finally the contribution of each of its mechanisms.

5.2.1 SMART++ without VCs. Figure 5 compares SMART with
multiple VCs and SMART++ without VCs (or 1 VC), showing the
average packet latency using single-flit packets, 5-flit packets and
a combination of single-flit packets and 5-flit packets (bimodal
traffic). The total buffering size (VCs × Buffer size) is the same
in both cases, injecting random uniform traffic. With single-flit
packets and the same total amount of buffering the performance
of SMART++ is similar to SMART. In the case of 5-flit packets
SMART++ achieves better performance when the buffer space is
low, 5 and 10 slots, and similar for 20 and 40. With a 5 slots buffer,
SMART++ outperforms SMART throughput by 48.7% with 1 VC.
For bimodal traffic SMART++ is even better, requiring half of the
buffer space of SMART to practically obtain the same performance.

Figure 6 depicts the packet latency using transpose and bit-
reversal traffic patterns, with bimodal packet size distribution. Re-
sults with both traffic patterns are very similar, requiring buffer
of only 10 slots to reach the maximum throughput, while SMART
requires 4 VCs of 5 slots. Additionally, SMART++ with a buffer size
of 5 slots improves the throughput of SMART with 2 VCs by 18.3%
and 10.9% for transpose and bit-reversal.

5.2.2 SMART++ with multiple VCs. Figure 7 compares the packet
latency of SMART and SMART++ with the same number of VCs
and buffer depth. The results of SMART++ with multiple VCs are
slightly better than without VCs for the same buffer space, beating
SMART in every configuration. The cause of the improvement is
the reduction of HoLB.

5.2.3 Partial implementations of SMART++. Figure 8 depicts a
breakdown of the improvements of the partial implementations of
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Figure 5: SMART vs SMART++ packet latency for different packet sizes. SMART++ only employs 1 buffer (no VCs). PSMax
stands for maximum Packet Size in the simulation, e.g. 4 × PSMax with bimodal traffic means 4 VCs of 5 flits.
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Figure 6: Latency of SMART and SMART++ without VCs for
transpose and bitreversal traffic, with bimodal packets.
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Figure 7: SMART vs SMART++ packet latency with multiple
VCs and minimal buffer size per VC.

SMART++ (SMART+MPB and SMART+MPB+NEBB). Figures 8a
and 8b show throughput and buffer utilization, respectively, in-
jecting bimodal traffic. The buffer utilization represents the per-
centage of flits that performs BW when arriving a router. It shows
that: SMART-MPB uses slightly more the bypass path than SMART
before saturation; SMART-MPB+NEBB reduces the buffer utiliza-
tion of SMART-MPB for every load achieving more throughput;
SMART++ has the lowest buffer utilization and the highest through-
put. Regarding the throughput obtained with buffers of 10 flits,
SMART-MPB almost achieves the same throughput of SMART++:
SMART+MPB increases SMART’s throughput by 39.7%, SMART+
MPB+NEBB by 45.1% and SMART++ by 48.5%.

Figure 8c depicts the maximum throughput injecting bimodal
traffic, for different combinations of VCs and buffer depths. There
are three remarkable conclusions. First, SMART requires a big
amount of VCs to reach the limit of the NoC (0.5 flits/node/cycle
in an 8 × 8 mesh). Secondly, SMART++ and its intermediate ver-
sions are very close to the maximum performance of SMART, but
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Figure 8: Performance metrics of SMART++ intermediate
versions using bimodal traffic.

without requiring VCs and with half of the total buffer size. Partic-
ularly, SMART++ with one buffer of 20 slots achieves only 3.0% less
throughput than SMART with 8 VCs of 5 slots. Thirdly, the main
source of throughput improvement is forwarding packets to par-
tially empty buffers (MPB) instead of empty. The improvement of
SMART++ over its intermediate versions is more significant when
the amount of resources is low.

5.3 SMART++ synthesis results
5.3.1 Model Validation. We first validate the models implemented
in Booksim and BSV by comparing their results. The network is a 4×
4 mesh with HPCmax = 4, single-flit packets and random uniform
traffic. Figure 9 shows the packet latency and maximum throughput
of both implementations for multiple buffer configurations. The
packet latencies obtained form both models are equal until reaching
the saturation region where there is a negligible difference. In terms
of maximum throughput the highest relative error between models
is only 3.53%, when using 2 VCs of 1 slot. Hence, the SMART (buffer
size 1) and SMART++ functional models implemented in BookSim
cycle accurately simulate the router architecture and the pipeline,
according to the HDL implementation.
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Figure 9: Comparison of packet latency and throughput of
the SMART++ models implemented in BSV and BookSim.

5.3.2 Resource Analysis. This and next sections analyze the re-
source requirements, the maximum frequency and the power con-
sumption of a single SMART++ router. Figure 10 shows FPGA re-
sources used by the synthesized routers, represented by the num-
ber of Adaptive Look-Up Tables (ALUTs), Adaptive Logic Modules
(ALMs), dedicated registers and internal block memory bits. The
results shows the high impact of the amount of VCs on resource
demands as they directly affect to the input units, credit units (credit
handling logic) and VA. When duplicating the number of VCs, the
number of resources is almost doubled. For example, the configura-
tion with 2 VCs of 1 slot increases the number of ALUTs by 86.9%,
ALMs by 82.3% and registers by 77.63% with respect to 1 VC of 1 slot.
Alternatively, when using deeper buffers, the resource utilization
grows in a much lighter way. For example, using 1 VC of 8 slots
requires 22.3%, 31.4% and 63.14% more ALUTs, ALMs and registers,
respectively, than using 1 VC of 1 slot. The compiler employs block
memory (internal FPGA RAM) when buffers larger than 10 slots are
instantiated. This occurs in the credit unit for configurations with
more than 8 buffer slots. The credit units of OpenSMART has two
FIFO structures per port to store credits pending to be transmitted.
Each one has as many entries as buffer slots has an input port.

5.3.3 Timing and Power Analysis. Figure 11 depicts the maximum
operation frequency and the dynamic power consumption for mul-
tiple router configurations. To obtain dynamic power results, we
feed the power analysis tool with VCD (value change dump) files
generated from ModelSim functional simulations with a clock fre-
quency of 50MHz, which fits in all configurations and is consistent
with the cycle-level results in Section 5.2. In both cases, the results
reveal that the number of VCs is a critical design factor. Doubling
the number of VCs decreases frequency by 18% to 29% in each step.
In terms of dynamic power, it almost doubles when duplicating
the number of VCs. For example, using 2 VCs of 1 slot multiplies
the power of 1 VC of 1 slot by 1.99. Increasing buffer depth has a
negligible impact on frequency and moderately increases dynamic
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Figure 10: FPGA resources employed by each configuration.
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Figure 11: FPGA frequency and dynamic power results.

power, 75.84% in the worst case (2×8 compared to 2×4 slots). Com-
paring the 8 × 1 SMART and the 1 × 8 SMART++ configurations,
resources are reduced by 5.49× on average and dynamic power by
4.99×. Notice that when using more than 8 slots in total, there is
an abrupt increase as a consequence of using block memory bits in
the credit units as depicted in Figure 10d.

5.3.4 Scaled SMART++ performance results. Section 5.2 presents
cycle-accurate performance results of SMART and SMART++. How-
ever, Figure 11a shows that frequency in SMART++ may be sig-
nificantly higher, further improving performance. Frequency is
determined by the first router stages. When a given HPCmax value
is considered, the delay of LT increases, and it might lower the
router frequency. In such case, frequency in SMART and SMART++
would be similar, and their performance would be proportional to
the figures in Section 5.2.

However, for moderate HPCmax and in FPGA evaluations, this
typically does not occur because propagation delay is significantly
lower than logic delay. In this case, performance will be deter-
mined by the maximum frequency in Figure 11a. Figure 12 presents
frequency-scaled latency results of SMART and SMART++. The
simpler SMART++ design using a single buffer with 4 packets (4 to
20 flits) clearly outperforms any SMART implementation. Compar-
ing to a competitive SMART using 4 VCs, base latency is reduced
at least by 31.9% and throughput increased by 42.2% in all cases.

6 RELATEDWORK
Sections 1 and 2 have already discussed several alternatives to re-
duce latency on NoCs, including SMART details. OpenSMART [15]
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(a) Single-flit packet latency.
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(b) 5-flit packet latency.
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(c) Bimodal traffic packet latency.
Figure 12: Frequency-scaled latency of SMART and SMART++ using different packet sizes.

is a NoC generator that generates verified RTL of SMART. We have
extended it to support SMART++, within its limitations.

An SSR network is proposed in [5] to replace SSR broadcast wires
and complex allocators to reduce wire and energy overheads. The
approach is particularly relevant in SMART-2D, which we do not
study for its complexity. WiSMART (wireless-enabled SMART [10])
is a hybrid of SMART and wireless NoC (WiNoC). This combination
allows to operate at high frequencies independently of HPCmax ,
using wireless communication for long distances. The combination
with SMART++ is possible, but left for future work.

Task mapping techniques to reduce conflicts between packets
in SMART are presented in [24]. They focus on communication
contention, rather than communication distance, as contention
degrades bypass utilization. An analytical model of SMART is pre-
sented in [3] to speed up simulations, reducing simulation time in
two orders of magnitude with respect to cycle-accurate simulators.
These works can be adapted to SMART++.

7 CONCLUSIONS
Power and area efficiency are essential features of NoC design.
Their optimization is crucial for integrating NoCs in many-core
processors. So far, SMART achieves the lowest latency in meshes.
However, it requires a large amount of VCs to exploit the advantages
of the mechanism due to its conservative VC reuse policy.

This work proposes SMART++, a multi-hop bypass mechanism
that does not require VCs. SMART++ targets VC and bypass utiliza-
tion, to allow multiple packets share the same buffer and bypass
routers when their buffers are not empty. SMART++ exhibits high
performance without VCs, reducing drastically power, area and
critical path delay compared to configurations of SMART with mul-
tiple VCs. Moreover, SMART++ presents a more efficient utilization
of buffers and bypass. Contrary to traditional wisdom, the use of
multiple VCs in SMART++ provides just a marginal improvement.

For the same frequency and similar performance, SMART++
reduces area and power by 5.5× and 5.0×. Selecting the maximum
frequency, SMART++ may reduce base latency by up to 31.9% and
increase throughput by up to 42.2%. Altogether, the simple design
in SMART++ simultaneously provides near-optimal performance
with a small footprint and reduced implementation cost.
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